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This paper presents and discusses physical models for simulating some aspects 
of neural intelligence, and, in particular, the process of cognition. The main 
departure from the classical approach here is in utilization of a terminal version 
of classical dynamics introduced by the author earlier. Based upon violations of 
the Lipschitz condition at equilibrium points, terminal dynamics attains two 
new fundamental properties: it is spontaneous and nondeterministic. Special 
attention is focused on terminal neurodynamics as a particular architecture of 
terminal dynamics which is suitable for modeling of information flows. Terminal 
neurodynamics possesses a well-organized probabilistic structure which can be 
analytically predicted, prescribed, and controlled, and therefore which presents 
a powerful toot for modeling real-life uncertainties. Two basic phenomena 
associated with random behavior of neurodynamic solutions are exploited. The 
first one is a stochastic at tractor--a stable stationary stochastic process to 
which random solutions of a closed system converge. As a model of the 
cognition process, a stochastic attractor can be viewed as a universal tool for 
generalization and formation of classes of patterns. The concept of stochastic 
attractor is applied to model a collective brain paradigm explaining coordina- 
tion between simple units of intelligence which perform a collective task without 
direct exchange of information. The second fundamental phenomenon discussed 
is terminal chaos which occurs in open systems. Applications of terminal chaos 
to information fusion as well as to explanation and modeling of coordination 
among neurons in biological systems are discussed. It should be emphasized that 
all the models of terminal neurodynamics are implementable in analog devices, 
which means that all the cognition processes discussed in the paper are reducible 
to the laws of Newtonian mechanics. 

1. INTRODUCTION 

The process of  human cognition represented by information flows on 
a certain time scale can be viewed as a dynamical process. On a time scale 
of  seconds and minutes, this process has a sequential character (Rumelhart, 
1987) (acceptance, rejection, or replacement of  ideas). On a much smaller 
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time scale (recognition of words and images) it can be represented by 
parallel distributed processing. Hence, an underlying dynamical system 
which models the cognition processes should have a complex multiscale 
structure. But can such a dynamical system be derived from physical laws? 
The answer to this fundamental question divides the scientific community 
into reductionists and their opponents. According to the reductionists, 
there is an intrinsic unity of science, and there are no independent levels of 
modeling, i.e., all natural phenomena are reducible to physical laws. Most 
biologists and cognitive scientists express doubts about such a possibility. 
In this paper, remaining neutral to philosophical aspects of the problem, we 
demonstrate the possibility to develop such a dynamical system which, 
being implementable in analog devices, can simulate some aspects of the 
processes of human cognition. 

2. BACKGROUND 

2.1. General Remarks 

One of the oldest and most challenging problems in cognitive science 
is to understand the relationships between cognitive phenomena and brain 
functioning. Since ancient times the mystery of mind has attracted philoso- 
phers, neuroscientists, psychologists, and later, mathematicians, physicists, 
etc. In line with attempts to understand and to simulate brain activity itself, 
there have been many successes in developments of brain-style information 
processing devices which focus on brain-inspired modeling rather than 
modeling of the brain as a part of the human body. The most powerful 
information processing device of this kind is the digital computer, which 
has revolutionized science and technology in our century and even changed 
the lifestyle of the whole society. The digital computer became the first 
candidate for human brain modeling. Artificial intelligence researchers 
predicted that "thinking machines" wil~ take over our mental work. 
Futurologists have proclaimed the birth of a new species, machina sapiens, 
that will share our place as the intelligent sovereigns of our earthly domain. 

Notwithstanding some achievements in "thinking machines" develop- 
ments, it seems very unlikely that digital computers, with their foundations 
on rigid, cold logic and full predictability, can model even the simplest 
biological systems, which are flexible, creative, and, to a certain degree, 
irrational. In addition, the main brain characteristics which contribute to 
information processing are different from those of digital computers. 
Indeed, neurons, as the basic hardware of the brain, are a million times 
slower than the information processing elements of serial computers. This 
slow speed is compensated by an extremely large number (up to a hundred 
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of billions) of neurons as active processing units which are highly intercon- 
nected. Hence, the brain succeeds through massive parallelism of a large 
number of slow neurons, and therefore the mechanisms of mind are most 
likely best understood as resulting from the cooperative activity of very 
many relatively simple processing units working in parallel rather than by 
fast, but sequential processing units of digital computers. There is much 
indirect evidence that the structures of the computational procedures in 
digital computers and brains are also different: instead of calculating a 
solution using sequences of rigid rules, the primary mode of computation 
in the brain is rather associated with a relaxation procedure, i.e., with 
settling into a solution in the same way in which a dynamical system 
converges to an attractor. Another difference between a digital computer 
and the brain is in the mechanisms of learning and memory storing. A 
number of facts suggest that the knowledge is in the connections between 
the neurons, rather than in the neurons themselves, while these connections 
have a clear geometric and topological structure. Such a distributed mem- 
ory storage is responsible for the graceful degradation phenomenon when 
the system performance gradually deteriorates as more and more neural 
units are destroyed, but there is no single critical point where performance 
breaks down. Based upon this kind of representation of the distributed 
memory, the learning procedure can be understood as gradual modifi- 
cations of the connection strengths during a relaxation-type dynamical 
process. 

Along with the abstract model of a computer as a formal machine that 
could be programmed to carry out an effective procedure, introduced by 
Alan Turing in 1936, another potential candidate for brain simulation has 
been developed: McCulloch and Pitts (1943) offered a formal model of the 
neuron as a threshold logic unit. They demonstrated that each Turing 
machine program could be implemented using a finite network of their 
formal neurons. In support to the idea of neural networks, Hebb's (1949) 
work provided the inspiration for many computation models of learning. 
However, it took about 30 years until the neural networks became a 
potential competitor to digital computers in regard to simulation of brain 
performance. 

Two main factors significantly contributed to the "second birth" of the 
neural networks. The first factor is associated with the pioneering work of 
Carver Mead on the design of neural networks and their implementation in 
analog VLSI systems. In his work he has shown how the powerful 
organizing principles of nervous systems can be realized in silicon inte- 
grated circuits. The second factor is based upon the progress in dynamical 
system theory. In the past, most theoretical studies of dynamical systems 
have been concerned with modeling of energy transformations. However, 
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in recent years several attempts were made to exploit the phenomenology 
of nonlinear dynamical systems for information processing as an alterna- 
tive to the traditional paradigm of finite-state machines. 

There is much evidence coming from the analysis of electroencephalo- 
gram data that human brain activity resembles a dissipative nonlinear 
adaptive system. In contradistinction to finite-state machines which operate 
by simple bits of information, the nonlinear dynamics paradigm operates in 
terms of complex "blocks" of information which resemble patterns of 
practical interest. 

2.2. Neural Net As a Dynamical System 

The current artificial neural nets can be considered as massively 
parallel adaptive dynamical systems modeled on the general features of 
biological neural networks that are intended to interact with the objects of 
the real world in the same way the biological systems do. 

As a dynamical system, a neural net is characterized by nonlinearity 
and dissipativity, which provide the existence of at least several attractors. 
There are many different modifications of neural nets. In this paper we will 
be interested only in those neural net architectures which do not contain 
any man-made devices (such as digital devices) and therefore are suitable 
for circuit implementations. Such neural nets (which in the literature are 
called continuously updated recurrent neural nets) can be represented by 
the following dynamical system: 

where x,. are state variables, or mean soma potentials, characterizing the 
neuron activities, Tij are constant control parameters representing the 
weights of synaptic interconnections, ~i are suitable time constants, and 
•(. ) is a sigmoid function having a saturated nonlinearity [usually 
a(x) = tanh fix, where fl = const > 0 is an additional control parameter]. 

An invariant characterizing the local dissipativity of the system (1) is 
expressed explicitly via its parameters: 

1 ( ~T/~ ) 
div ~ = 2 - - 1  + (2) 

i zi \ cosh 2 ~ j  T, jxj 

A necessary (but not sufficient) condition that the system (1) has 
attractors is that there are some domains in phase space where the 
invariant (2) is negative. 

If the matrix "Fig is symmetric 

T,j = Tj~ (3) 
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then equations (1) can be represented in the form of a gradient system, and 
therefore it can have only static attractors. In the basin of a static attractor, 
the invariant (2) must be negative. 

Since the system (1) is nonlinear, it can have more than one attractor; 
consequently, in some domains of phase space, the invariant (2) may be 
positive or zero. 

Equation (1) presents the neural net in its "natural" form in the sense 
that x~ and 2"/i correspond to physical parameters: neuron potentials and 
synaptic interconnections, respectively. However, it is important to empha- 
size that the relationship between the invariants of the "vector" u,. and the 
"tensor" T u are not preserved by the coordinate transformation, i.e., 
equation (1) does not possess an invariant tensor structure. Consequently, 
the column ui and the matrix T u cannot be treated as a vector and tensor, 
respectively. 

In most applications, the neural nets performance is associated with 
convergence to attractors (pattern recognition, optimization, decision mak- 
ing, control, associative memory, generalization, etc.). The locations of 
attractors and their basins in phase space can be prescribed by an appropri- 
ate choice of the synaptic weights T u i.e., by solving inverse dynamical 
problems. However, since the dimensionality of neural nets is usually very 
high (in biological systems it is of order of 10 ~ with the number of synaptic 
interconnections of order of 10~5), the straightforward analytical approach 
can be very expensive and time consuming. An alternative way to select 
synaptic weights in order to do specific tasks was borrowed from biological 
systems. It is based upon iterative adjustments of T u as a result of 
comparison of the net output with known correct answers (supervised 
learning) or as a result of creating of new categories from the correlations 
of the input data when correct answers are not known (unsupervised 
learning). Actually the procedure of learning is implemented by another 
dynamical system with the state variables T,.j which converges to certain 
attractors representing the desired synaptic weights 7~;j. 

2.3. Limitations of Classical Approach 

The biggest promise of artificial neural networks as computational 
tools lies in the hope that they will resemble the information processing in 
biological systems. Notwithstanding many successes in this direction, it is 
rapidly becoming evident that current models are characterized by a 
number of limitations. We will analyze these limitations using the additive 
model as a typical representative of artificial neural networks: 

Yci + xi = ~ T i ja (x j )  + Ii, i = 1, 2 . . . . .  n (4) 
j = l  
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in which x ; ( t )  is the mean soma potential of the ith neuron, T o are constant 
synaptic interconnections, a ( x )  is a sigmoid function, and 1; is an external 
input. 

First, the neuron performance in this model is collective, but not 
parallel: any small change in the activity of an ith neuron instantaneously 
affects all other neurons: 

~2i via 
= 0 ( 5 )  

In contrast, all biological systems exhibit both collective and parallel 
performances. For instance, the right and the left hands are mechanically 
independent (i.e., their performance is parallel), but at the same time, 
their activity is coordinated by the brain; that makes their performance 
collective. 

Second, the performance of the model (4) is fully prescribed by initial 
conditions. The system never "forgets" these conditions: it carries their 
"burden" up to t ~ ~ .  In order to change the system performance, the 
external input must overpower the "inertia of the past." In contrast the 
biological systems are much more flexible: they can forget (if necessary) the 
past, adapting their behavior to environmental changes. 

Third, the features characterizing the system (4) are of the same scale: 
they are insulated from the microworld by a large range of scales. At the 
same time, biological systems involve mechanisms that span the entire 
range from the molecular to the macroscopic. 

Can these limitations be removed within the framework of classical 
dynamics? The answer is no. Indeed, all the systems considered here are 
based on classical dynamics and satisfy the Lipschitz condition which 
guarantees the uniqueness of the solutions subject to prescribed sets of 
initial conditions. For the system (1) this condition requires that all the 
derivatives 0 2 i / O x j  exist and are bounded: 

~3xi < oe (6) 

The uniqueness of the solution 

x; = x ; ( t ,  x l  . . . . .  x , ) ,  i = 1, 2 . . . .  , n (7) 

subject to the initial conditions xi(0, x~ . . . . .  x,) = ~t can be considered as 
a mathematical interpretation of  the rigid, predictable behavior of  the 
corresponding dynamical system. 

Actually, all the limitations of the current neural net models men- 
tioned above are inevitable consequences of the Lipschitz condition (6) and 
therefore of determinism of classical dynamics. 
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2.4. Terminal Dynamics 

It has long been recognized that classical deterministic dynamics is not 
suitable for capturing the truly dynamical behavior of real-world applica- 
tions, and in particular the dynamics of information flows, the dynamics of 
multichoice human behavior, etc. A primary reason is that this kind of 
dynamical process is characterized by uncertainties which arise in a dy- 
namic setting (for instance, when information that will be needed in 
subsequent decision stages is not yet available to the decision-maker). 
Uncertainties are described for purposes of mathematical analysis by 
probability theory, and the dynamics simulating the evolution of uncertain- 
ties acquires stochastic properties. 

Turning to governing equations of classical dynamics, 

d 8L aL OR 
- . ,  i = l , 2 , . . . , n  (8) 

dt ~I i 6~qi 6~qi 

where L is the Lagrangian, qi, 0i are the generalized coordinates and 
velocities, and R is the dissipation function, one should recall that the 
structure of R(0i . . . .  , qn) is not prescribed by Newton's laws: some addi- 
tional assumptions are to be made in order to define it. The "natural" 
assumption (which has never been challenged) is that these functions can 
be expanded in Taylor series with respect to equilibrium states: 0; = 0. 
Obviously this requires the existence of the derivative: 

O2R 
80i ~0; < oo at 0i --' 0 

A departure from that condition was proposed in Zak (1992), where 
the following dissipation function was introduced: 

1 O r  i . Ik+ t 
R =  k + i ~o~i ~ q j q j  (9) 

in which 

k =  P ~ < I ,  p>>l (10) 
p + l  

where p is a large, odd number. 
By selecting large p, one can make k close to 1, so that equation (9) is 

almost identical to the classical one (when k = 1) everywhere excluding a 
small neighborhood of the equilibrium point 0j = 0, while at this point 

02R 
~ .  --* oo at q : ~ O  (11) 
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Hence, the Lipschitz condition is violated; the friction force Fi = 
-OR/a(h grows sharply at the equilibrium point, and then it gradually 
approaches its "classical" value. This effect can be interpreted as a mathe- 
matical representation of a jump from static to kinetic friction, when the 
dissipation force does not vanish with the velocity. 

It appears that this "small" difference between the friction forces at 
k = 1 and k < 1 leads to fundamental changes in Newtonian dynamics. In 
order to demonstrate it, we will consider the relationship between the total 
energy E and the dissipation function R: 

dE 
-~~0i ~-~. R --(k + 1)R (12) 

dt i oqi 

Within a small neighborhood of an equilibrium state (where the 
potential energy can be set zero) the energy E and the dissipation function 
R have the order, respectively, 

E ~ r  2, R,~q/k+l at E ~ 0  

Hence, the asymptotic form of equation (5) can be presented as 

dE 
- - = A E  (k+t)/2 at E ~ 0 ,  A = const (13) 
dt 

If  A > 0 and k < 1, the equilibrium state E = 0 is an attractor where 
the Lipschitz condition (Id~/dEI--, oo at E ~ 0) is violated. Such a terminal 
attractor is approached by the solution originating at E = AEo > 0, in finite 
time: 

fo dE  2AE(o , - k)/2 
to = Jaeo hE(k+ ,)/e - (1 - k)lAI < ~ (14) 

Obviously, this integral diverges in classical case k > 1, where to ~ ~ .  
The motion described by equation (13) has a singular solution E = 0 and 
a regular solution 

[ 1 12/(~ -k) E = AE(J - k)/2 + 2 A( 1 - k)t (15) 

In a finite time this motion can reach the equilibrium and switch to the 
singular solution E -= 0, and this switch is irreversible (Fig. 1). 

The coefficient k can be found from experimental observations of the 
time to. 

As is well known from the dynamics of nonconservative systems, 
dissipative forces can destabilize the motion when they feed external energy 
into the system (the transmission of energy from laminar to turbulent flow 
in fluid dynamics, or from rotations to oscillations in dynamics of flexible 
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2 t3 

X02 (x -- 0) : "I'ER.blINAL ATTRACTOR 

P t 

x 
l .~ = zl/3 

X03 ~ 1  

XOI . . . .  

(x = 0) : TERMINAL REPELLER 

Fig. 1. Behavior of terminal attractor and repeller. 

systems). In terms of  equation (13) this would mean that A > 0, and the 
equilibrium state E = 0 becomes a terminal repeller (Zak, 1992). 

If  the initial condition is infinitely close to this repeller, the transient 
solution will escape it during a finite time period: 

de .  2Ae o - 
t ~ 1 7 6  (1 - k)A < m  

while for a regular repeller, the time would be infinite (Fig. 1). 
Expressing equation (13) in terms of  velocity at i = 1, q~ = v, 

f: = Bv k, B = const > 0 

one arrives at the following solution: 

v = + {[B(1 - k)t] p+ 2},/2 (16) 

As in the case of a terminal attractor, here the motion is also 
irreversible: the time-backward motion obtained by formal time inversion 
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t ~ - - t  in equation (16) is imaginary, since p is an odd number [see 
equation ( 10)]. 

In addition, terminal repellers possess even more surprising character- 
istics: the solution (16) becomes totally unpredictable. Indeed, two different 
motions described by the solution (11) are possible for "almost the same" 
(Vo = + e--* 0, or v 0 = - e  ~ 0 at t--* 0) initial conditions. 

Thus, a terminal repeller represents a vanishingly short, but infinitely 
powerful "pulse of unpredictability" which is pumped into the system via 
terminal dissipative forces. Obviously failure of the uniqueness of the 
solution here results from the violation of the Lipschitz condition at v = 0. 

Terminal dynamics can be introduced as a set of nonlinear ordinary 
differential equations of the form 

5c i=v~(x l , x2  . . . . .  x,), i = 1, 2 , . . .  ,n  (17) 

in which 

av, 
axj < ~ (18) 

and k < 1. 
Therefore, 

Oxj =kv(k -1) (x l  . . . . .  x . )  ~ o o  if 2 , -~0 (19) 

and the Lipschitz condition is violated at all the equilibrium points 

2i = 0 

As in the classical case, the equilibrium points are attractors if the real 
parts of the eigenvalues of the matrix 

0vi 
m = ~xj (20) 

are negative, that is, 

Re 2i < 0 (21) 

and are repellers if some of  the eigenvalues have positive real parts. 
Basic mathematical and physical aspects of terminal dynamics are 

discussed in (Zak (1988, 1989a-c, 1990a,b, 1991a,b, 1992, 1993a). Recently 
an analog VLSI circuit was designed which, when operated in the sub- 
threshold domain, models the terminal attractor/repeller phenomena (Cetin 
et al., 1991). 
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3. TERMINAL NEURODYNAMICS 

3.1. General Remarks 

Terminal neurodynamics is a particular version of terminal dynamics 
which is suitable for modeling information flows. For that purpose, it has 
a well-organized probabilistic structure which can be prescribed, predicted, 
and controlled. Terminal neurodynamics and its applications to informa- 
tion processing are discussed in Zak (1990b, 1991a,b, 1992, 1993a). 

We should emphasize the fundamental difference between the proba- 
bilistic properties of terminal dynamics and those of stochastic or chaotic 
differential equations. Indeed, the randomness of stochastic differential 
equations is caused by random initial conditions, random forces, or ran- 
dom coefficients; in chaotic equations small (but finite!) random changes of 
initial conditions are amplified by the mechanism of instability. But in both 
cases the differential operator itself remains deterministic. In contradistinc- 
tion to that, in terminal dynamics randomness results from the violation of 
the uniqueness of the solution at equilibrium points, and therefore the 
differential operator itself generates random solutions. 

Terminal neurodynamics is based upon a physical implementation of 
the random walk paradigm. 

3.2. Random Walk Paradigm 

A random walk is a stochastic process where changes occur only at 
fixed times; it represents the position at time t,~ of a particle taking a 
random "step" Xm independently of its previous ones. 

Let us start with the following dynamical system: 

= ?, sin ~/3 -w/c~ x sin cot, y = const, co = const, ~ = const (22) 

It can be verified that at the equilibrium points 

nrne 
m = . . . ,  - 2 ,  - 1 ,  0, 1, 2 , . . .  (23) Xrn "~- %//--~ ' 

the Lipschitz condition is violated: 

O2/Ox ~ oe at x ~ Xm (24) 

If X = 0 at t = 0, then during the first period 

0 < t < n/co (25) 

the point Xo = 0 is a terminal repeller since sin cot > 0 and the solution at 
this point splits into two (positive and negative) branches whose divergence 
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is unbounded (Zak, 1992) [equation (16)]. Consequently, with an equal 
probability, x can move in the positive or the negative direction. For the 
sake of concreteness, we will assume that it moves in the positive direction. 
Then the solution will approach the second equilibrium point Xl = n~/V/-~ 
at 

t* 1 [ B(1/3'l/3)~-~Tm. ] 
= --co arccos 1 21/3 (26) 

in which B is the beta function. 
It can be verified that the point Xl will be a terminal attractor at t = t I 

if 

~r ~ B(1/3, 1/3) 
tl < - ,  i.e., i f -  > 24/3 ~ (27) 

(D ~t 

Therefore, x will remain at the point xl until it becomes a terminal 
repeller, i.e., until t > t 1 . Then the solution splits again: one of two possible 
branches approaches the next equilibrium point x2 = 2rce/x/~, while the 
other returns to the point x0 = 0, etc. The periods of transition from one 
equilibrium point to another are all the same and are given by equation 
(26) (Fig. 2). 

It is important to notice that these periods t* are bounded only 
because of the failure of the Lipschitz condition at the equilibrium points. 
Otherwise they would be unbounded, since the time of approaching a 

Fig. 2. Oscillations about the attractor X = O. 
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regular attractor (as well as the time of escaping a regular repeller) is 
infinite. 

Thus, the evolution of x prescribed by equation (22) is totally unpre- 
dictable: it has 2 m different scenarios where m = E(t/t*) (Fig. 3), while any 
prescribed value of x from equation (23) will appear eventually. (Here E is 
the integer part of the ratio t/t*.) This evolution is identical to a random 
walk, and the probability f (x ,  t) is governed by the following difference 
equation: 

x , t  + ~ f  x + v / ~  t (28) f x , t + - ~  = ~ f  ~ - - ,  

For better physical interpretation we will assume that 

7Z~ 
- - ~ L ,  t * ~ T ,  i.e., co --. oo (29) 

in which L and T are the total length and the total time period of the 
random walk, respectively. Setting 

7Z~ 
- ~  --* 0, t*--*0 (30) 

one arrives at the Fokker-Planck equation: 

Of(x, t) _ 1 D2 O2f(x, t) D 2 = 7z~ 2 (31) 
~t 2 Ox 2 ' 

Its unrestricted solution for the initial condition that the random walk 
starts from the origin x = 0 at t = 0 

1 - 2 - - ~  f (x ,  t) - (2rcD2t)u2 exp (32) 

] N=2n 

Fig. 3. Unpredictable evolution. 
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qualitatively describes the evolution of the probability distribution for the 
dynamical equation (22). It is worth noticing that for the exact solution one 
should turn to the difference equation (28) since actually co < ~ .  

Equation (28) can be presented in the following operator form: 

lEt 1 E E x l ) ~ f  (33) - ~ (  x +  = 0  

where Et and E x are shift operators: 

Etf(x, t) = f(x,  t + z), Exf(x, t) = f ( x  + h, t), h - ~ (34) 

Utilizing the relationships between the shift and the differential opera- 
tor D 

8 
E~ =e r~n,, E~ =e rhDx, Dt Ot' Dx Ox (35) 

one can transform from equation (28) to equation (31) if 09 ~ ,  i.e., 
�9 ,h ~0 .  

For further analysis it will be more convenient to modify equation (22) 

2 =  7 sink(--~-~ x ) s in  cot (36) 

as follows: 

assuming that 

1 
k 2n + 1' n ~ o o  (37) 

where n is an integer. 
This replacement does not change the qualitative behavior of the 

dynamical system (37): it changes only its quantitative behavior between the 
critical points in such a way that one has explicit control over the period of 
transition from one critical point to another (Zak, 1993a). 

3.3. Stochastic Attractors in Terminal Dynamics 

The dynamical system considered above exhibited an unrestricted 
random walk. As a result, the probability density of the solutions vanishes 
at t ---, ~ .  In this section we will describe a new phenomenon--an attraction 
of the solution to a stationary stochastic process whose density function is 
uniquely defined by the parameters of the original dynamical system. 

We will start with the following one-dimensional dynamical system: 

2 = 7  s i n k ( - ~  - ~  s inx)s in  cot (38) 
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It has the following equilibrium points: 

},~ = arcsln ---= m , m . . . .  - 1, - 1 O, 1, 2 . . . .  (39) / ' , 

Obviously now the distances between these points depend upon the 
number of  step m: 

)1 hm=xm* -xm* - l = a r c s i n  m - a r c s i n  za ( m - 1  (40) 

Let us introduce a new variable: 

y = sin x (41) 

Then 

ym = - ' ~  m, ym -- ym_ l = W/-- ~ (42) 

This means that the probability as a function of y satisfies the following 
equation: 

[E, -~l (Ey + Eyl)~f(t, y) =O (43) 

However, in contradistinction to equation (33), here y is bounded: 

lyl = I sin xl < 1 (44) 

If  the solution of equation (43) subject to the boundary condition (74) 
is found 

* t  f = f ( ,  y) (45) 

then the solution to the original problem is 

* t  f = f [ ,  y(sin x)] [cos x] (46) 

For better physical interpretation of the solution (46) consider a limit 
case when 

~ ~ ,  i.e., z, hm ~ 0  (47) 

Then equation (43) transforms to the Fokker-Planck equation: 

~__f= 1 D2 t32f (48) 
t3t 2 c~y 2 

with the boundary conditions 

Of] c~f 0 (49) 
~Y]y=l t~y y=_ l  
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is 

Its solution subject to the initial conditions 

f (0 ,  y) = q~(y), ~o(y) > 0, f l  
--I 

~o(y) dy  = 1 (50) 

f nT~ 
an = 2 q~(z) cos ~-  (z + 1) dz, (52) 

1 

and therefore 

f ( t , Y ) ~ � 8 9  at t ~ o o ,  [y[_< 1 (53) 

Returning to the original variable x, one obtains instead of  (53) 

f ( x )  = 0.51y'[ = 0.5 cos x, - n / 2  < x < ~/2 (54) 

Hence, any solution originating within the interval 

- ~ / 2  < x < rU2 (55) 

always approaches the same stationary stochastic process (54), which plays 
the role of  a stochastic attractor. 

It should be emphasized that this is a new phenomenon which does 
not exist in the classical version of  nonlinear dynamics. Unlike chaotic 
attractors, here the probability density can be uniquely controlled by the 
parameters of  the original dynamical system, while the limit stochastic 
process does not depend upon the initial conditions if they are within the 
basin of attraction. 

Now one can generalize equation (38) by requiring that its solution 
should have a stochastic attractor with a prescribed density function f ( x )  
under the only restrictions that 

[.N 
f ( x )  = 0 for Ix I > N, N < ~ ,  f ( x )  dx = 1 (56) 

,]--N 

Based upon equation (54), one arrives at the following equation 
instead of  equation (38): 

2 =~ s ink[-~-p(x)]s ino~t ,  p(x) = 2 f x N f ( , ) d ~  -- (57) 

Indeed, introducing a new variable [compare with equation (41)] 

y = p(x), y( - N)  = - 1, y(N) = 1 

1 ~ nn 
f ( t ,  y) = 5 + a,e _~202,2,/2 cos -~- (y  + 1), ly] < 1 (51) 

n=l 

n = 1 , 2 , . . .  
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one obtains instead of equation (54) 

1 ldp 
f(x)  = 5 lY'I (58) - 2 d x  

Turning to an n-dimensional dynamical system, we confine ourselves 
to a special form: 

2~ = ,i sink [ ~  p~(y,)l sin o~t (59) 

where 

._L" 
y~ = ~ Tijxj, Tis = const (60) 

j = l  

It will be assumed that 

dp~{>O for ]Yll<N~ 
dy---~ 0 for tyil> N~ N~ < ~ (61) 

and T o forms a symmetric positive-definite matrix. The last property 
provides stability (if sin ~ot < 0) or instability (if sin ~ot > 0) of the system 
(59) at the terminal equilibrium point. 

Based upon this, one concludes that the system (59) will be locally 
stable or locally unstable depending upon the sign of sin ogt, and that 
synchronizes the conversions of terminal attractors into terminal repellers 
and vice versa. 

Exploiting the result (58), one obtains that the solution to equation 
(59) has the following density function in terms of the variables ye: 

f ( y ,  . . . . .  y,) = f i  p~(y~), p, =--dP (62) 
i = 1  dy 

In terms of the variables x~, the joint density of the solution is 

f(x~, . . . , x,) = f i  P~ (Yi) �9 d e t l T ,  j l  (63) 
i = 1  

where y~ is expressed via x~. by equation (60). 

3.4. Examples 

Example 1. We start with the following problem: Find a dynamical 
system whose solution is attracted to a stochastic process with the normal 
density 

f (x)  = z = e - ~x - ,~2/2~2 (64) 
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where # and tr are the mean and the standard deviation, respectively, and 
z(y) is the standard normal density function. In order to apply (58), first 
(64) should be modified, since it does not satisfy the restriction (56). 

We will introduce a truncated standard normal density function: 

z(Y)f > 0  ( y ) =  ifif [YlIYI<N > N N < ~  (65) 

Then, with reference to equation (57), one obtains 

y c = ~ s i n k [ ~ C f f ( x - - i ~ ) ] s i n c o t  ' ~ f ( y ) =  2 f f  ~(u) du (66) 
\ ~/2cr .]_J 

Thus, equation (66) represent a dynamical system whose solution is 
attracted to a stochastic process with the density function (65). For a 
sufficiently large N it will be close to a Gaussian process with p and tr as 
the mean and the standard deviation, respectively. 

Example 2. Let us assume now that the density f (x)  of a sought 
stochastic process is characterized by p = P0, a = #~, and higher central 
moments Yr. Utilizing the Gram-Charl ier  series expansion 

f (x)  = 1 - a , = o  ~ c ~ ( ' ) ( ~ )  (67) 

where 

1 1 
e 0 = 1, e 1 = c 2 = 0 ,  c3 = - - 3 T / ~ / 3 ,  e4 = ~ (#4 -- 3) 

1 1 (68)  
e5 = - ~  (#5 - l 0/t6), c6 = ~ (/~6 - 15#4 + 30), etc. 

~(') - dr~(Y) (69) 
dy" 

and applying equation (57), one obtains 

:t =,  sink{T --I- Tf{'x- + ~ c,.~" - '(-~---~)) sin ogt (70) 
L \.,/7,,).=3 

Hence, the solution to the dynamical system (70) is attracted to a 
stochastic process whose density function is characterized by the moments 
ta r .  

Example 3. In this example we will pose the following problem: Find 
a dynamical system whose solutions xi(t) are attracted to a stochastic 
process characterized by the column of means and the matrix of  moments 

M x i  = fti, (~ij = M ( x i  - -  # i ) ( X j  - -  ]"~j), i , j  = 1, 2 . . . . .  n (71) 
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First one can find such an orthogonal transformation 

y, = t h + ~ T~j(xj - #j) 
j = l  

that 

(72) 

MYi=t l i=0 '  a i 'k=j=t t= l  ~ ~ aJtTuT~=fik={ 10 if if i=ki~k (73) 

where Yi are noncorrelated standard normally distributed variables. 
Combining equations (59), (60), and (66), one obtains 

~i = 7i s i n k [ ~  ~ -  ~ f ( ~ ) l  sin cot, yi = J=,~ Tij(xy-#j) (74) 

Some comments concerning the stability of equations (74) should be 
made. Since T,-j is an orthogonal matrix, the real parts of the eigenvalues of 
rij are 

Re 2i = cos q~i > 0 for 0 < q~ < zc/2 (75) 

where ~0~ are the angles of rotation of the coordinate axes, and since 

d er,,~f(yi) > 0 for [Yl < N~ (76) 
dy, 

i.e., the condition (61) is satisfied, equations (74) linearized with respect to 
their equilibrium points have eigenvalues whose real parts are all positive 
(if sin cot > 0) or negative (if sin cot < 0), and that synchronizes conversions 
from terminal attractors to terminal repellers and vice versa. 

Thus, the solution to the dynamical system is attracted to a stochastic 
process with prescribed probabilistic structure (71) if the initial conditions 
are within the basin of attraction: [Yil < Ni. 

4. STOCHASTIC ATTRACTOR AS A TOOL FOR 
GENERALIZATION 

Random activity in the human brain is a subject of discussion in many 
recent publications (Harth, 1993; Osovets, 1983). The interest in the 
problem was promoted by the discovery of strange attractors. This discov- 
ery provided a phenomenological framework for understanding electro- 
encephalogram data in regimes of multiperiodic and random signals gener- 
ated by the brain. An understanding of the role of such random states in 
the logical structure of human brain activity would significantly contri- 
bute not only to brain science, but also to the theory of advanced 
computing based upon artificial neural networks. In this section, based 
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upon properties of terminal neurodynamics discussed above, we propose a 
phenomenological approach to the problem: we demonstrate that a 
stochastic attractor incorporated in neural net models can represent a class  

of patterns, i.e., a collection of all those and only those patterns to which 
a certain concept applies. Formation of such a class is associated with 
higher-level cognitive processes (generalization). This generalization is 
based upon a set of unrelated patterns represented by static attractors and 
associated with the domain o f  a lower level of brain activity (perception, 
memory). Since a transition from a set of unrelated static attractors to the 
unique stochastic attractor releases many synaptic interconnections be- 
tween the neurons, the formation of a class of patterns can be "motivated" 
by a tendency to minimize the number of such interconnections at the 
expense of omitting some insignificant features of individual patterns. 

Let us first consider a deterministic dissipative nonlinear dynamical 
system modeled by a coupled set of first-order differential equations of the 
form 

:~i = V~(xj ,  T i j ) ,  i , j  = 1, 2 . . . . .  n (77) 

in which xi is an n-dimensional vector function of time representing the 
neuron activity, and T u is a constant matrix whose elements represent 
synaptic interconnections between the neurons. 

The most important characteristic of the neurodynamic systems (77) is 
that they are dissipative, i.e., their motions, on the average, contract phase 
space volumes onto attractors of lower dimensionality than the original 
space. 

So far only point attractors have been utilized in the logical structure 
of neural network performance: they represent stored vectors (patterns, 
computational objects, rules). The idea of storing patterns as point attrac- 
tors of neurodynamics implies that initial configurations of neurons in 
some neighborhood of a memory state will be attracted to it. Hence, a 
point attractor (or a set of point attractors) is a paradigm for neural net 
performance based upon the phenomenology of nonlinear dynamical sys- 
tems. This performance is associated with the domain of lower-level brain 
activity such as perception and memory. 

It is easily verifiable that a set of point attractors imposes certain 
constraints upon the synaptic coefficients T;j. Indeed, for a set of m fixed 
points ~k (k = 1, 2 . . . . .  m) one obtains m x n constraints following from 
(77): 

0 = Vi(:~ff, Tij), i , j  = 1, 2 . . . . .  n, k = l , 2  . . . . .  m (78) 
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In order to provide stability of  the fixed points ~k, the synaptic 
coefficients must also satisfy the following m x n inequalities: 

Re 2~ < 0 ,  i = 1 , 2  . . . . .  n, k = l , 2 , . . . , m  (79) 

in which 2~ are the eigenvalues of the matrices II f,/axj 11 at the fixed points 
Xf. 

How can a neural network minimize the number of  interconnections 
Tij without a significant loss of  the quality of  a prescribed performance? 

Let us assume that the vectors ~k have some characteristics in com- 
mon, for instance, their ends are located on the same circle of  a radius ro, 
i.e. (after proper choice of  coordinates) 

2 

( ~ ) 2  _ ro 2, k = 1, 2 . . . .  , m (80) 
i = l  

If  for the patterns represented by the vectors ~7~ the property (80) is 
much more important than their angular coordinates 0 k ( o k ~  0 k2 if 
kl v~ k2), then it is "reasonable" for the neural net to store the circle r = ro 
instead of storing m point attractors with at least 2 x m synaptic co- 
efficients T,.j. Indeed, in this case the neural net can "afford" to eliminate 
unnecessary synaptic coefficients by reducing its structure to the simplest 
form: 

i" = r ( r  - r o ) ( r  - 2ro), 0 = o9 = const (81) 

Equations (81) have a periodic attractor 

r = r0, 0 = ogt (82) 

which generates harmonic oscillations with frequency co. But what is the 
role of  these oscillations in the logical structure of  neural net performance? 
The transition to the form (81) can be interpreted as a generalization 
procedure in the course of  which a collection of unrelated vectors ~k is 
united into a class of  vectors whose lengths are equal to r 0. Hence, in terms 
of  symbolic logic, the circle r = r0 is a logical form for the class of  vectors 
to which the concept (80) applies. In other words, the oscillations (82) 
represent a higher-level cognitive process associated with generalization and 
abstraction. During these processes, the point describing the motion of  (81) 
in the phase space will visit all those and only those vectors whose lengths 
are equal to ro; thereby the neural network "keeps in mind" all the 
members of  the class. 

Suppose that a bounded set of isolated point attractors which can be 
united in a class occupies a more complex subspace of  the phase space, i.e., 
instead of  the circle (80) the concept defining the class is 

�9 (~7~,~2 k . . . . .  ~ )  = r, k = 1 , 2 , . . . , m  (83) 
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Then the formation of the class will be effected by storing a surface 

O ( x l ,  x2 . . . . .  Xn) = r (84) 

as a limit set of the neurodynamics, while all the synaptic coefficients Tij 

which impose constraints on the velocities along the surface (84) will be 
eliminated. 

The character of the motion on the limit set depends upon the 
properties of the surface (84). If (by proper choice of coordinates) this 
surface can be approximated by a topological product of n - 1 circles [i.e., 
by an ( n -  1)-dimensional torus], then the motion is quasiperiodic: it 
generates oscillations with frequencies which are dense in the real. If the 
surface (84) is more complex and is characterized by a fractial dimension, 
the motion on such a limit set must be chaotic: it generates oscillations with 
continuous spectrum. In both cases the motion is ergodic: the point 
describing the motion in the phase space sooner or later will visit all the 
points of the limit set, i.e., the neural net will "keep in mind" all the 
members of the class. 

Thus, it can be concluded that artificial neural networks are capable of 
performing high-level cognitive processes such as formation of classes of 
patterns, i.e., formation of new logical forms based upon generalization 
procedures. In terms of the phenomenology of nonlinear dynamics these 
new logical forms are represented by limit sets which are more complex 
than point attractors, i.e., by periodic or chaotic attractors. It is shown that 
formation of classes is accompanied by elimination of a large number of 
extra synaptic interconnections. This means that these high-level cognitive 
processes increase the capacity of the neural network. The procedure of 
formation of classes can be initiated by a tendency of the neural network 
to minimize the number (or the total strength) of the synaptic interconnec- 
tions without a significant loss of the quality of prescribed performance; 
such a tendency can be incorporated into the learning dynamics which 
controls these interconnections (Zak, 1989b). 

In addition, the phenomenological approach presented above leads to 
a possible explanation of random activity of the human brain; it suggests 
that this activity represents the high-level cognitive processes such as 
generalization and abstraction. 

Turning to the terminal neurodynamics represented by equations (59) 
and (60), one can view a stochastic attractor as a more universal tool for 
generalization. Indeed, in contradistinction to chaotic attractors of deter- 
ministic dynamics, stochastic attractors can provide any arbitrarily pre- 
scribed probability distributions (63) by an appropriate choice of (fully 
deterministic!) synaptic weights Tgj. 
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The information stored in a stochastic attractor can be measured by 
the entropy H via the probabilistic structure of this attractor: 

H(X1 . . . . .  X2 . . . . .  X . )  = - ~  . . . .  ~" f ( x ,  . . . . .  x . )  logf(xl  . . . .  , x,,) 
x ~  x n 

(85) 

where the joint density f ( x ~ , . . . ,  xn) is uniquely defined by the synaptic 
weights T~j by means of equation (63). 

For instance, the information stored by the dynamical system (66) is 
measured by the entropy: 

H = log2[(2nea 2) 1/2] (86) 

since this system has a stochastic attractor with normal density distribution 
(64). 

As shown in Zak (1993b), terminal neurodynamic systems can have 
several, or even infinitely many, stochastic attractors. For instance, the 
dynamical system 

xl = 71 sin~[x/~ sin(xl + x2)] sin cot (87) 

:~2 = Y2 sink[x/~ sin(xl + x2)] sin cot (88) 

has stochastic attractors with the following densities: 

f ( x , ,  x2) = 0.5[cos(xl + x2) cos(x 1 - -  X2) ] (89) 

7rml rt(mt + 2) /rm 2 /z(m 2 + 2) 
- -  < x~ + x 2  < , - -  < x l  - x 2  < ( 9 0 )  

2 2 2 2 

m~ . . . . . .  - 7 ,  - 3 ,  1, 5, 9, etc.; m 2 . . . . .  --5, - 1 , 3 , 5 , 7  . . . . .  (91) 

The solution (89) represents a stationary stochastic process which 
attracts all the solutions with initial conditions within the area (90). Each 
pair rn, and rn: from the sequences (91) defines a corresponding stochastic 
attractor with the joint density (89). 

Hence, the dynamical system (87), (88) is capable of discrimination 
between different stochastic patterns, and therefore it performs pattern 
recognition on the level of  classes. 

5.  C O L L E C T I V E  B R A I N  P A R A D I G M  

In this section the usefulness of terminal neurodynamics, and in 
particular of  a new dynamical phenomenon--stochast ic  at tractor--wil l  be 
demonstrated by simulating a paradigm of a collective brain. 
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5.1. General Remarks 

The concept of the collective brain has appeared recently as a subject 
of intensive scientific discussions from the theological, biological, ecological, 
social, and mathematical viewpoints (Huberman, 1989; Seeley and Levien, 
1988). It can be introduced as a set of simple units of intelligence (say, 
neurons) which can communicate by exchange of information without 
explicit global control. The objectives of each unit may be partly compatible 
and partly contradictory, i.e., the units can cooperate or compete. The 
exchanging information may be at times inconsistent, often imperfect, 
nondeterministic, and delayed. Nevertheless, observations of working insect 
colonies, social systems, and scientific communities suggest that such 
collectives of single units appear to be very successful in achieving global 
objectives, as well as in learning, memorizing, generalizing, and predicting, 
due to their flexibility, adaptability to environmental changes, and creativity. 

In this section collective activities of a set of units of intelligence will 
be represented by a dynamical system which imposes upon its variables 
different types of nonrigid constraints such as probabilistic correlations via 
the joint density, it is reasonable to assume that these probabilistic correla- 
tions are learned during a long-term period of performing collective tasks. 
Due to such correlations, each unit can predict (at least in terms of 
expectations) the values of parameters characterizing the activities of its 
neighbors if the direct exchange of information is not available. Therefore, 
a set of units of intelligence possessing a "knowledge base" in the form of 
a joint density function is capable of performing collective purposeful tasks 
in the course of which the lack of information about current states of units 
is compensated by the predicted values characterizing these states. This 
means that actually in the collective brain global control is replaced by the 
probabilistic correlations between the units stored in the joint density 
functions. 

Since classical dynamics can offer only fully deterministic constraints 
between the variables, we will turn to its terminal version discussed in the 
previous sections. Based upon the stochastic attractor phenomenon as a 
paradigm, we will develop a dynamical system whose solutions are stochas- 
tic processes with prescribed joint density. Such a dynamical system 
introduces more sophisticated relationships between its variables which 
resemble those in biological or social systems, and it can represent a 
mathematical model for the knowledge base of the collective brain. 

5.2. Model of Collective Brain 

Let us first turn to an example and consider a basketball team. One of 
the most significant properties of success in a game is the ability of each 



Physical Models of Cognition 1137 

player to predict the actions of his or her partners even if they are out of 
that player's visual field. Obviously, such an ability should be developed in 
the course of training experience. Hence, the collective brain can be 
introduced as a set of simple units of intelligence which achieve the 
objective of the team without explicit global control; actions of the units 
are coordinated by the ability to predict the values of parameters charac- 
terizing the activities of their partners based upon the knowledge acquired 
and stored during long-time experience of performing similar collective 
tasks. 

We will start with the mathematical formulation of the collective brain 
for a set of two units considered in the previous section and described by 
equations (87), (88). As shown there, this system has a random solution 
which eventually approaches a stationary stochastic process with the joint 
probability density (89). For further analysis we will take ml = 1, m2 = - 1  
from equation (91). 

As follows from the solution (89), one can find the probability density 
characterizing the behavior of one unit (say xl) given the behavior of 
another, i~ x2. 

Let us assume now that the unit xl does not have information about 
the behavior of the unit x2. Then the unit xl will turn to the solution (89), 
which is supposed to be stored in its memory. From this solution, the 
conditional expectation of x2 given xl can be found as 

E(xz ]xl = x , )  = x2f2 (x2 ]xl ) dx2 = )72 (92) 
oO  

in which the conditional density 

f(Xl' X2) (93) A(x21x,)- - x7 

where the marginal density is 

f l  (xl)  = f ( x l ,  x2) dx2 (94) 
oO 

Actually the integration with respect to x 2 in (53) and (55) is taken 
over the square A B C D  in Fig. 4. 

Substituting (94) and (93) into (92), one obtains 

22 ~ n/2, 0 < x2 < lr (95) 

Similarly, 

21 ~ zr/2, 0 < x2 < rc (96) 
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Fig. 4. Col lec t ive  b r a i n  wi th  fuzzy  object ive.  

X 1 

Clearly this result should be expected based upon the symmetry of the 
square A B C D  and the joint probability density (89) with respect to the 
lines (95) and (96). 

It should be noticed that in the general case 

-~2 = ~2(xl) and xl = ~1(x2) (97) 

Substituting (95) and (96) into (87) and (88), respectively, one obtains 

x, =71 sinkIv/-~ sin(x1 + 2 ) ]  sin cot (98) 

- x2 sin cot (99) 

The system (98), (99) respresents the collective brain derived from the 
original system (87), (88). 

Both equations (98) and (99) are self-contained: they are formally 
independent since the actual contribution of the other unit is replaced by 
the "memory" of its typical performance during previous (similar) collec- 
tive tasks. This memory is extracted from the joint probability density (89) 
in the form of the conditional expectations (95), (96). 

The probability densities for the performances of xl and xz in the 
collective brain are 

qh(xl) =~2~ 'c~ + re/2)[' 0<x~  <zt (100) 
otherwise 
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f- lcos(, /2 - x,)L  (lOI) 
~02(X2) = (0, otherwise 

and therefore their joint probability density is 

f�88 O x,,x2 (102) 
~o o (xl, x2) = (0, otherwise 

Obviously, (102) is different from (89), and therefore, strictly speaking, 
the performance (100), (101) of the units x~ and x2 in the collective brain 
(98), (99) is different from their original performance (89) when all the 
information about the other unit is available. However, this difference 
should not be significant if a new task belongs to the same class for which 
these units were trained. 

The dynamical paradigm described above can be easily generalized to 
an n-dimensional system, 

~ci =yi s inkl- -~Pi(Yi) ls inf~ Xi  = j = l  ~ Tij' xj' t i j=c~ (103) 

while 

, dp,-{>00 for [y, <N;  N~<az (104) 
Pi =-~V- i for [Yi > Ni 

As shown above, the solution to (103) is random, and it eventually 
approaches a stationary stochastic process with the joint probability den- 
sity (63). 

Following the previous example, we will assume that the ith unit xe has 
actual input only from the units Xk(o, k < n, so that the rest of the inputs 
should be predicted based upon the joint probability density (63) which 
was learned by each unit in the course of the previous collective tasks. Now 
instead of (103) one can introduce the collective brain: 

.~i = ,, sink[--~--~pi(~i)] sin c o t .  (105) 

~V, = Tuy j + E T j ,  Ix, . . . . .  Xk(o (106) 
k( 1 

Here the unavailable input from the units xk(m . . . . .  xn is replaced by 
their conditional expectation given x, . . . . .  xk(,.). As in the two-dimensional 
case considered above, this expectation is uniquely defined by the joint 
probability distribution (63). In the extreme case k = n - 1, i.e, when the 
actual information from other units is not available, equation (106) reduces 
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to the following: 

~i = vi + E T~jvj [u~ (107) 
j 1 

while the conditional expectation in (107) depends only on x~. This means 
that all the units in the collective brain (105), (106) are formally indepen- 
dent. But as in the example considered above, their performances are 
coupled by the "memories" of previous collective tasks stored in the form 
of conditional expectations. 

It should be stressed that the main advantage of the collective brain is 
in its universality: it can perform a purposeful activity without global 
control, i.e., with only partial exchange of information between its units. 
That is why the collective brain can model many collective tasks which 
Occur in real life. Obviously the new tasks are supposed to belong to the 
same class for which the units were trained. In other words, too many 
novelties in a new task may reduce the effectiveness of the collective brain. 

5.3. Collective Brain with Fuzzy Objective 

So far we have been concerned with the structure of the model of 
collective brain regardless of the objective of its performance. In this 
section we will discuss the collective brain with objectives for its perfor- 
mance. Usually the objective of a performance is reduced to the minimiza- 
tion of a function or a functional subject to some constraints. In this way 
the problem has at least a rigorous mathematical formulation, although its 
solution may not be simple. However, in most practical, real-life problems 
(for instance, in operations research) the information about the objective is 
vague, imprecise, and uncertain. In mathematical terms it means that the 
analytical structure of the function (or the functional) to be minimized is 
not available. Clearly, this kind of problem is the best "match" for the 
collective brain, whose low precision is compensated by a high degree of 
universality. Actually the main motivation for the development of the 
mathematical model of collective brain was its ability to perform in a more 
"human" way when rigid rules are replaced by the ordering of multichoice 
actions with respect to "preference." 

In this section we will discuss fuzzy objectives, which are given by a 
system of inequalities. We will start with a two-dimensional example, and 
turn to (87), (88). However, now we will assume that co ~ const, and in 
particular 

0 if 0 < 0  
o9 = 090 > 0 (108) 

COo if 0 > 0  

The inequality (108) can be implemented by the following dynamical 
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equation (Zak, 1993a): 

f.b= [CO(CO0--co)] 1 /30-  62( co --21-/, 62"*0  (109) 

(This kind of dynamical system will be discussed in the next sections.) Here 
0 can be an arbitrary function of x~ and x2, for instance 

0 = (xl - ~l )~ + (xz - ~2) 2 - a 2 (110) 

where ~I, ~2, and a are given constants. 
As follows from equation (110), all the states of the system (87), (88), 

and (108) which are inside of the circle 

(X 1 -- O~ 1 )2 _~ (X 2 -- 0~2)2 -~- a 2 (111) 

will correspond to its equilibria, since then 0 < 0 and co = 0. But since the 
solution to these equations is random, it can approach an equilibrium at 
different points inside of this circle, i.e., the final equilibrium point will be 
characterized by some uncertainty. 

I t  is worth emphasizing that this uncertainty is not explicitly imposed 
by any rigid rule: it is generated by the dynamical system itself as a result 
of  the randomness of its behavior, and the fuzziness of  the objective function 

0 < 0  (112) 

Obviously the circle (111) (or at least part) must be inside of the square 
ABCD (Fig. 4). For that one can take, for instance, 

~1 = 0c2 = ~/2 (113) 

The objectives of the units u~ and u2 are not necessarily identical, but 
they must be compatible. For instance, instead of (87), (88), (108), and (109) 
one can have 

xl = V~ sink[x/~l sin(xl + x2)] sin o91 t (114) 

:~2 = V2 sink[x/~2 sin(xl -- x2)] sin 092 t (115) 

However, now we will assume that coi ~ const, and in particular 

0 if 0i < 0  
col = i = 1, 2 (116) 

COo if 0 i > 0  

while 

.V ( .V (117) 

(118) 
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In this case the area of the equilibria of the system (114)-(118) is 
within the ring of  width l: 

(x, ---~) + ~x2---~) = a 2, (x, --~) + (Xz -2)2 = (a - l) 2 (119) 

and therefore the solution can approach any of its points. 
We can give the following interpretation of  the performance of  this 

system. Let us assume that the units u~ and u2 were trained to perform a cer- 
tain class of  collective tasks which led to formation of the soft constraints 

T~I = 1, T22 = - 1 ,  T12 = T2~ = 1 (120) 

so that the random behavior of  xl and x2 eventually approaches a 
stationary stochastic process with the joint probability density (89). Let us 
also assume that a new task (which belongs to the same class for which the 
system was previously trained) is to optimize some process which depends 
upon the values x~ and x2. Here we will be interested in the cases when this 
dependence is given in an uncertain, imprecise way, which is typical for the 
problems in decision-making processes. The simplest mathematical formal- 
ization of  such a dependence is expressed by the "yes-or-no" relationship 
with respect to a certain discrimination surface 

Oi(xi, x2) = 0, i = 1, 2 , . . .  ,n  (121) 

In particular, the values xl and x2 are optimal if 

0i < 0 (122) 

and nonoptimal if 

Oi > 0 (123) 

As follows from equations (114)-(116),  in the case (122) the dynami- 
cal system will remain in equilibrium, while in the case (123) this system 
will evolve until it approaches the area (122). 

In general, the criterion of the optimality may change in time, 

Oi(xl, x2, t) = 0 (124) 

while 0e is a slow function of  time in the sense that 

~30 < 0r (125) 

If  the system (114)-(116) was m an equilibrium, eventually it will be 
activated again when the inequality (122) changes to (123), and then it will 
evolve until a new equilibrium in the area (122) will be approached again, 
etc. 
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In the most general case the parameters which define the criterion of 
optimality may themselves be governed by a dynamical process which is 
controlled by the original dynamical system, for instance, 

al = 21 s i n k [ ~ l  sin(a1 + a2)] sin f~lt (126) 

~i2 = 22 sink[x/~2 sin(al + a2)] sin ~1 t (127) 

0 if Fi < 0 
co i = (128) 

~Oo if F~>0 

0i in (116) and Fi in (128) are expressed as 

Oi = Oi(x l ,  x2, al, a2), Fi = Fi(al, a2, xl, x2) (129) 

The relationship between equations (114)-(116) and (126)-(129) 
represents a dynamical game which ends when simultaneously 

Oi < 0 and Fi < 0 (130) 

Hence the equilibrium values of xl, x2, al, and a2 are given by the 
intersections of the inequalities (129), and they densely fill up a part of 
the space xl, x2, al, a2. Despite the fact that the dynamical behavior of the 
parameters xi, a/is characterized by uncertainties (coming from the ran- 
domness of the solutions and the fuzziness of the optimality criteria), the 
end of the game, i.e., the stationary values of x~ and a;, can be predicted in 
probabilistic terms since these values should belong to the stochastic 
attractor of the system (114)-(116), (126)-(129) whose joint probability 
density is uniquely defined by the synaptic interconnections (120). 

Let us now return to the model of the collective brain, and start with 
the dynamical system (113)-(115). In reducing this system to the model of 
the collective brain, one should assume again that each unit does not have 
explicit information about another, and therefore, the values of x2 in (114) 
and the values of xl in (115) must be replaced by the conditional expecta- 
tions x2 and ~71, respectively [see (95) and (96)]. But in addition, one has to 
introduce different rhythms col and ~oz which are controlled by different 
functions 01 and 02, respectively: 

21 =21 sin k sin xl + 2  sin c~ (131) 

= - -  X 2 s i n  cozt (132) 

0 if Ot<O 
co t = i = 1, 2 (133) 

090 if Ot>O 
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while 01 and 02 are obtained from equation (110) as a result of replacing x2 
and x~ by their conditional expectations ~2 and ~7~, respectively: 

01  = ( X  l __ 0~ 1 ) 2  "3 L (n/2 - x 2 )  2 - -  a 2 (134) 

02 = (7Z/2 + Cq) 2 + (X2 -- ~t2) 2 = a 2 (135) 

Equations (131), (132) have random solutions which are attracted to 
stationary stochastic processes with independent probability densities (100) 
and (101), respectively. The system will approach an equilibrium state if 
simultaneously 

01 < 0 and 02 < 0 (136) 

For cq = ~2=7r/2, the area of possible equilibria is the square 
A'B'C'D" of Fig. 4, 

xl =rr/2 ++_a, x2=zc/2 + a (137) 

Recalling that for the original system (114) and (115), the area of 
possible equilibria is inside of the circle of radius a (Fig. 4), one can see 
that the performance of the collective brain is sufficiently close to the 
original performance. 

It should be stressed that the success of the collective brain perfor- 
mance depends upon how close the new task is to the class of tasks for 
which the system was trained. This means that the collective brain may 
fail if the new task has too many "novelties." In the selected example, 
the training area (see the square ABCD in Fig. 4) is compatible with the 
objective (the circle with the center 0 in Fig. 4), and therefore the 
performance of the collective brain (the square A'B'C'D'  in Fig. 4) is 
satisfactory. 

6. OPEN SYSTEMS IN TERMINAL NEURODYNAMICS 

The neurodynamic models discussed in the previous sections are 
similar to closed thermodynamic systems in the sense that their entropy can 
only increase until it reaches its maximum at the stochastic attractor. In 
this section we will introduce open systems which are maintained in their 
specific states by an influx of energy, so that information stored in the 
dynamical system can increase or decrease. 

Let us assume that the dynamical system (22) is driven by a vanish- 
ingly small input e(0: 

= 7 sin I/3 ~ x sin cot + ~(t), le(t) ] ~ ~ (138) 
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This input can be ignored when ,~ ~ 0 or when ~ = 0, but the system 
is stable, i.e., x = rc~ /,,/ co,/-- 3z~/x/~,  etc. However, it becomes significant 
during the instants of instability when ~ = 0 at x = 0, 27r~/x/~, etc. 

The function e( t ) ,~  7 can be associated with a microsystem which 
controls the neuron behavior through a string of signs (Zak, 1990b). 

Indeed, actually the only important part in this input is the sign of e(t) 
at the critical points. Consider, for example (138), and suppose that 

sgne(tk) = + ,  + ,  - ,  + ,  , ,etc. at tk = z c k / c o , . . .  (139) 

k = 0 ,  1 , 2 , . . .  

The values of e(t) in between the critical points are not important 
since, by our assumption, they are small in comparison to values of the 
derivative ~ and therefore can be ignored. Hence, the only part of the input 
e(t) which is significant in determining the motion of the neuron (138) is the 
sign string (139): specification of this string fully determines the dynamics 
of (138). 

Figure 5 demonstrates three different scenarios of motions for the 
different strings: 

= sin  /co 

It should be emphasized that, although these three solutions are 
bounded and aperiodic, they are fully deterministic in the sense that each 
of them is uniquely defined by the corresponding initial conditions. 

Suppose that 

e(t) = - e~x, eo 2 ~ O (140) 

i.e., 

= 7  sin1/3 ---~--~ x sin cot - e 2 x ,  e0~0  (141) 

It can be verified that the solution to equation (141) will oscillate 
about the point x = 0. Indeed, when the point x = 0 becomes a terminal 
repeller, i.e., when sin cot > 0, the solution escapes to the neighboring (right 
or left) equilibrium point. However, ~ < 0 at xl = n~ /x /~  > 0 and ~ > 0 at 
x~ = - nct/,v/-~. Therefore, in both cases the solution returns to the original 
point x = 0. The amplitude and the period of the oscillations about x = 0 
can be found from (23) and (26), respectively. 

However, in contrast to a classical version of equation (141), 

= - eEx  (142) 

where x = 0 is a static attractor, the same point x = 0 is not a static, and 
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T o = N  
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Fig. 5. Temporal  patterns and their codes. 

not  even a periodic, but  a stochastic at tractor.  Indeed, there are several 
equally probable  patterns o f  oscillations: 

0 , 1 , 0 , - 1 , 0 ;  0 , - 1 , 0 , 1 , 0 ;  0 , 1 , 0 , 1 , 0 ;  0 , - 1 , 0 , - 1 , 0  . . . .  (143) 

which can follow each other  in an arbi t rary order. In  probabilistic terms 
the oscillations can be characterized as x = 0 at t = 2~n/o9, while 

Pr x t - -  = 1  = 0 . 5  
(.o 

Pr x t . . . .  1 = 0 . 5  (144) 
(.o 

n = - 2 ,  - 1 , 0 ,  1 , 2 , . . .  

so the probabil i ty o f  any combinat ions  o f  the patterns (143) can be found 
from equat ion (144). 
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It should be emphasized that the random stationary process (144) can 
be considered as a stochastic attractor which is approached by the solution 
to (141) regardless of initial conditions. But in contradistinction to the 
stochastic attractors in closed systems considered in the previous sections, 
where initial disorder could only increase, here the entropy of the initial 
distribution of x can be higher than that of the attractor (144), i.e., the 
dynamical system (141) may decrease the initial information. This funda- 
mental difference between closed and open neurodynamic systems is caused 
by the fact that the evolution of closed systems is driven by pure diffusion 
[see (31)], while the evolution of open systems is driven by both diffusion 
and convection. Indeed, the evolution of the probability density of the 
solution to (141) (for ~ ~ ~ )  is governed by the Fokker-Planck equa- 
tion with the drift term: 

Of ,  1 2O~f 
ft = --c~U/~(q --P)~x -t-~nct Ox 2 (145) 

where p and q are the probabilities that the process is directed to the right 
or to the left, respectively, at each critical point. 

Obviously, the last (diffusion) term survives only if 

(p - 1) ~ 1/x/~--+0 (146) 

As follows from equation (141), 

{0 gnx  if x~a0 
P - q =  if x = 0  p + q = l  (147) 

and therefore equation (145) can be rewritten as 

0f Of 1 2 Ozf o,. --at = ~v/-~ ~x sign x + -~ 7r~ ~ ottP - q)] (148) 

where 6 is the Dirac function. 
Let us assume that the initial density of x is uniform: 

f~  O) = {~ = 1 / l  otherwiseif [xl < l (149) 

Then, the solution to equation (148) is ISo t [x -- (~V/~ sign x)t] + - - - -F-  6(0) if 0 < t -< zt----~ (150) 

f ( x )  = l 
L6(O) if t > c--- ~ 
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The Dirac function 6(0) in the solution (150) provides the normaliza- 
tion condition: 

f_ ~  dx = 1 (151) 
r 

The process of the probability density evolution can be interpreted as 
follows: the initial uniform density (149) "moves" (with the velocity 
___ex/~) toward the point x = 0, being absorbed there. At the same time, 
the Dirac function grows out of the point x = 0 in such a way that it 
compensates the "loss of the area" enveloped by the density f(x). Hence, 
eventually, the solution approaches the attractor x = 0, while the transition 
period 

l 
T = --. 0 if x / ~  --* oe (152) 

However, for 

l 
t =  

the drift term disappears [see equation (147)] and diffusion takes over. For 
finite x /~  it leads to the random oscillations described by equation (144). 

It should be emphasized that the stochastic attractors in open systems 
[see equation ( 144)] are different from those in closed systems considered in 
the previous sections. First, they may have an entropy which is smaller 
than the initial entropy. Second, the time of approaching these attractors is 
finite [see (152)]. In order to distinguish these two types of stochastic 
attractors, those in the open systems were called terminal chaotic attrac- 
tors, or terminal chaos (Zak, 1991a). The similarity between the random 
oscillations (144) and chaotic attractors in classical dynamics is in the fact 
that in both cases the phenomena are based upon combined effects of 
stability and instability. However, in terminal chaos (144) the mechanisms 
of stability and instability act sequentially: during the first period the 
neuron is attracted to the point x = 0, then it is repelled from it (in one of 
two possible directions). Second, the time of approaching the center x = 0 
is finite (due to failure to the Lipschitz condition at x = 0). That is why this 
attractor is terminal. Clearly, terminal chaos is characterized by a well- 
organized probabilistic structure [see (144)] which simplifies its prediction 
and control. More general properties of terminal chaos were analyzed in 
Zak (1991a). In order to illustrate some of them, let us consider two 
independent neurons which have the following microdynamics: 

-xl = T s in l /3  to  --xl sin tot - e~x l ,  62 --.~ 0 (153) 
0~ 
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-x2 = Y sin1/3 co --  x2 sin cot + ~o2X2(0.5 -- x2)(x2 -- 1) (154) 
r 

As shown above, the first neuron performs chaotic behavior with respect to 
the center x~ = 0, while the second neuron has two centers of  terminal 
chaos: at x2 = 0 and x2 = 1. 

Let us introduce now a secondary scale microdynamics with the order 
of  ~4-~0 which couples (153) and (154): 

Xl = 7 sin1/3 co --  xl sin cot - e2xl + e4x2 (155) 

x2 = V sinl/a co - -x2 sin cot + e ~ x 2 ( O . 5 - - x 2 ) ( x 2 - -  1) +eo4Xl (156) 
~t 

The last terms in these equations are effective only when all the other terms 
are zero, i.e., at the centers of  chaotic attractors x~ = 0, x2 = 1, where the 
behavior of  the neurons is unpredictable. Due to the coupling via the 
secondary scale microdynamics, the second neuron makes a decision for the 
first one at x~ = 0 as well as the first neuron makes a decision for the 
second one at x2 = 0 and xz = 1. In other words, the chaotic structure of  
the neurons with the primary microdynamics (153) and (154) reserves room 
for a match between these two neurons if they work in parallel, without 
changing their pr imary microdynamics. In the same way each of  these 
neurons can work in parallel with other neurons while the adjustment 
between them is carried out by the secondary scale microdynamics due to 
the chaotic structure of  their pr imary microdynamics. 

The secondary order microdynamics does not necessarily eliminate 
chaos. Indeed, if in (155), (156) x~ = 0 and x2 = 0 simultaneously, then the 
behavior of  the first neuron at xl = 0 is still unpredictable, and the 
third-order-scale microdynamics should be incorporated. Hence, one ar- 
rives at multiscate microdynamic chains by means of  which different 
neurons are adjusted to each other in their parallel performance on the 
level of  a certain order scale microdynamics. However, the room for such 
an adjustment is provided by the chaotic structure of  microdynamics of  
uncoupled neurons via the redundancy of available "free" parameters.  

Now we take the next step toward neurodynamic complexity and 
replace equation (141) by the two-scale microdynamics 

= Y sinl/3 col x sin col t -- ~2x sin co2 t (157) 
51 

co2 ~ co3 (158) 

During the period 

t < ~r/~oi (159) 
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the solution to equation (157) behaves exactly as for (141): It has a chaotic 
attractor at x = 0, since 

sgn x = sgn(x  sin 032t) at t < ~ /032 (160) 

But in contrast to the latter, the solution to equation (157) is not 
locked up in this chaotic attractor: eventually it drifts away from the point 
x = 0 since 

sgn x = - s g n ( x  sin 0320 at t > ~ /032  (161) 

and the scenario of  the chaotic oscillations can be the following: 

0 , 1 , 0 , - 1 , 0 , 1 , 2 , 1 , 2 , 3 , 4 , 3 , 4 , 5  . . . .  

o r  

0, 1,0, - 1 , 0 ,  - 1 ,  - 2 ,  - 1 ,  - 2 ,  --3, - 2 ,  - 3 ,  - 4  . . . .  (162) 

This drift can be bounded if one modifies equation (157) as 

= ~ sin1/3 031 x sin 03, t - e~x  sin 0)2 t - e4x  (163) 

The last term representing the second-order microdynamics will return 

o r  

0 , 1 , 0 , - 1 , 0 , 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 , 0 , - 1 , 0 , - 1 , - 2 , - 3 , - 4  . . . .  

0, 1,0, - I ,  - 2 ,  - 3 ,  - 4 ,  - 5 ,  - 4 ,  - 3 ,  - 2 ,  - 1 ,  

0, 1,0, - 1 ,  - 2 ,  - 3 ,  - 4  . . . .  (164) 

Hence, despite the fact that the solution to (164) has a more complex 
temporal structure and a larger number of unpredictable elements, it is still 
characterized by global coherence: it oscillates chaotically with respect to 
x = 0, while the amplitudes of  the oscillations also change chaotically from 
1 t o 5 .  

In the same way one can introduce a multiscale dynamics: 

= 7 sin1/3 ~ - - x s i n 0 3 1 t + e 2 x s i n 0 3 2 t - e a x s i n 0 3 3 t - e 6 , . . .  (165) 

031 > > 0 3 2 > > 0 3 3 , . . .  , /~0 -'~ 0 

whose complexity will be proportional to the number of  microscales 

the solution to the chaotic attractor x = 0 after the period t > zc/032; and 
the scenario of the "double-period" chaotic oscillations will be, for 
O) 1 = 5(.02, 
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e2, e04 . . . .  or the number  of  local times 

7~ i) = n--k, k = 1,2 . . . .  (166) 
(D i 

This multiscale model can be associated with the cascade of  intrinsic 
rhythms which characterize the temporal architecture of  mental processes 
(Geissler, 1987). 

Loosely speaking, one can conclude that a neurodynamics with a 
limited number  of  local times, or microscales, has limited complexity in the 
sense that it is locked up in a set of  behaviors which belong to a certain 
class of  patterns, and it can escape this class only if the next microlevel 
(with the corresponding local time) is added. 

In this connection an interesting question can be posed: can a micro- 
dynamics " improve"  itself by producing additional microlevels, or is the 
number of  such levels "genetically" prescribed? So far we do not know the 
answer. 

The structure (165) is the simplest way to increase the complexity of  
coherent temporal behavior. A more sophisticated approach can be based 
upon nonlinear effects (Zak, 1991a). In order to illustrate this, let us turn 
to (138) and exploit the following microdynamics: 

e( t )  = e Z x ( x  - 1.5)(x - 4)(4.5 - x ) ( x  - 5) (167) 

Here the solution to equation (138) possesses two different terminal 
chaotic attractors. The first one has its center at x = 0 and is characterized 
by the probabilities (166). The second one has two centers, x = 4 and 
x = 5, and is characterized by the probabilities 

Pr(x = 4) = Pr(x = 5) = 1/3, Pr(x = 3) = Pr(x = 6) = 1/6 (168) 

One can verify that their basins of  attraction are, respectively, 

x < 1.5 and x > 1.5 (169) 

Suppose that the microdynamics (167) includes some external input 
f ( t )  which can be interpreted as an outside message: 

e( t )  = ~ [ x ( x  - 0.5)(x - 4)(4.5 - x ) ( x  - 5) +f ( t ) ] ,  ~0 ~ 0 (170) 

Then if 

f ( t )  >21  at x = 1 (171) 

the solution which originally was trapped in the first attractor x = 0 will 
escape it and will move to the second attractor with two centers: x = 4 and 
x = 5 .  
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Conversely, if 

f ( t )  < -13 .5  at x = 3  (172) 

the solution will return to the first attractor. 
Actually the dynamical systems of this type can be regarded as an 

implementation of a concept of processing of  information which includes 
semantics. This concept is based upon the idea that a meaning can be 
attributed to a message only if the response of  the receiver (a dynamical 
attractor) is taken into account. In this context the inequalities (171) and 
(172) can be utilized for evaluation of the "relative importance" of the 
messages delivered by the outside input f(t) .  

Let us make the next step toward the complexity of temporal struc- 
tures and show that under certain conditions the solution can change its 
attractor; moreover, it can create a new attractor and eliminate the old one. 
In order to illsutrate this, let us consider the following dynamical system: 

XI = ~1 sinl/3 col - - x l  sin cot - e2xl (173) 

X2 ~Y2 sinl/3 co = --  x2 sin co2t - e2[x2(xl - 0.5)(x2 - 1)(xl + 0.5)] (174) 
~2 

in which 

Axj - n ~  - n~2  _ A x 2  = 1, col ~ co2 ( 1 7 5 )  
091 02 

Equation (173) is identical to equation (141): it has a terminal chaotic 
attractor at Xl = 0 with the pattern of oscillations (143). The solution to 
(174) has more complex behavior: it has a terminal chaotic attractor x2 = 0 
if xj < 0.5, but this attractor disappears as soon as Xl > 0.5, and the 
solution approaches a new terminal chaotic attractor x2 = 1. Obviously 
such a transition has a random nature since the oscillations of x~ are 
chaotic. However, the probability of  this transition can be found based 
upon the probability of  xl given by equation (144). 

More general types of microdynamics and their applications to infor- 
mation processing are described in Zak (1991a). To conclude this section, 
we will discuss open systems with spatial coherence. 

As shown in Zak (1991c), spatial self-organization in actual (physical) 
space can be achieved by introducing a special type of local interconnection 
simulating diffusion, dispersion, and convection, while the underlying con- 
tinuous (in time and space) model is described by field equations in which 
local interconnections are represented by spatial derivatives of  neuron 
potentials. In this section we will incorporate the diffusion-type local 
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interconnections into the microdynamics assuming that the neuron potential 
discrete distribution xi over the indices i can be represented by its continuous 
analog x ( s ) .  

Then the 
equation: 

neurodynamics is represented by one partial differential 

X, ~ , sin 1/3 co X sin cot + 32Xss (176) 

X i -  1 ~ Xi ~ Xi + 1 

will have 

x~ = 0  

The probability of  the appearance of  such points is 

Pr(xi_ 1 = x i  = x,.+ 1) = (0.5) 3 = 0.125 

(181) 

(182) 

(183) 

in which 

X ~ 2X 

Ot ' Xss - -  ~S 2 , ~, 7 = co .  xt 

while the finite-dimensional version of  G,~ is 

Xss " Xi + 1 - -  2Xi + Xf _ l ( 1 7 7 )  

We will select the parameters 0r and co such that 

IXmax___~ ~., n~X ( 1 7 8 )  
n co 

in which n is the number  of  neurons. In this case the changes of  the h :uron  
potential per unit length and per unit of  (local) time are of  the same order. 

Without loss of  generality one can introduce the following initial and 
boundary conditions: 

x ( s ,  0) = 0 ,  x(0, t) = x ( 1 ,  t) = 0  (179) 

Then xss = 0 at t = 0, and the solution to equation (176) starts with totally 
unpredictable behavior: at t = n/co it approaches the values +n~/co, which 
are randomly distributed over x and therefore the function 

may have a monstrous configuration. During the next period re/co < t < 
2n/3co those points at the curve (180) where x,~ > 0 (and therefore x < 0) 
will go up to x = 0, and those points where x~s < 0 (and therefore x > 0) will 
go down to x = 0. However, as follows from (177), those point xi for which 
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These particular points may return to x = 0, but with the equal 
probability they can move away to the value 

( 2re) = ~2rc~/309 if x i ( t=rc /og)>O (184, 
xe t = ~  [ - 2 ~ / 3 o 9  if x i ( t=rc /09)<O 

Thus, each point of the curve (180) with the probability 0.9375 will 
return to the initial configuration x = 0, and with the probability 0.0625 
will move away from it. Actually the curve 

x = x(s, 2rc/309) (185) 

will be close to x = 0 in terms of the mean square distance: 

p = x2(s, 2~/309) ds ~ 0  (186) 

It will coincide with the initial configuration almost everywhere excluding 
some solitary sharp peaks. 

The next step of the evolution will be almost the same as the first step: 
the solution will approach the configuration with the values +_n~/09 
randomly distributed over x, while the probability that this configuration is 
identical to (180) has the order ~ 2-"  (n is the number of neurons). The 
solitary peaks where the magnitude of Xss is large will be pushed back 
toward x = 0, etc. 

Thus, the solution to equation (176) with the initial and boundary 
conditions (179) chaotically oscillates about the initial configuration x = 0. 
In other words, it preserves the mean square configuration x = 0, while the 
actual configuration x(s) remains random and unpredictable. 

It is worth mentioning that the attraction of the solution to its mean 
square value is provided by the stability of the solution x = 0 to the 
underlying diffusion equation: 

x, = e2x~s (187) 

subject to the conditions (179), which can be obtained by a superposition 
of terms with exponentially decaying multipliers: 

x(s, t) = ~ One (~P)204/sin zcns ~ 0  at t --* ~ (188) 
p= l  

Let us introduce now variable boundary conditions [instead of (179)] 
assuming that they are governed by another dynamical system: 

[ x ( O ' t ) ] s i n 0 9 t - - 6 2 x ( O , t )  (189) xt(O, t) = 7 sinl/3 09o ~t 
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I x(1, t)]  sin cot - ~2x(1 ,  x~(l, t) = 7 sin1/3 coo- t) (190) 

where 

coo ~ co (191) 

Since the general solution to equation (187) is a family of straight lines, 

x = ClS + c 2  (192) 

one concludes that the solution to equation (176) with the boundary 
conditions (189), (190) will oscillate chaotically with respect to different 
straight lines of the family (192) while the change of these lines is also 
chaotic [in accord with changes of the boundary conditions following from 
the dynamics (189), ( 190)]. 

Hence, the solution to equation (176) with variable boundary condi- 
tions has more unpredictable features, but it still preserves the following 
property: the mean square solution is always a straight line. In other words, 
the behavior of the system (176), (189), and (190) represents the general 
solution to (187) as a mean square of chaotic oscillations, while the 
behavior of the system (176), (179) represents one of its particular solutions 
X = 0 .  

If one replaces equation (176) by 

x~ = ? sin 1/3 co - -x  sin cot + e2(x,s - fl2x) (193) 

then the solution to the system (133), (189), and (190) will oscillate 
chaotically with respect to the curves of the family 

x = cl sign fls + c2 cosh fls (194) 

The stability of these oscillations follows from the stability of the 
underlying diffusion equation with chain reactions: 

x ,  = e~(Xs~ - f lZx)  (195) 

whose exponential decay is defined by the eigenvalues 

2 e = - ( f l Z + ~ p ) 2 6 2 ,  p = 1,2 . . . .  (196) 

As in the previous case, the choice of the curve from the family (194) 
is made by the boundary conditions which are controlled by (189), (190), 
and therefore are oscillating chaotically about the values 

x(0, t) = 0, x(1, t) = 0 (197) 

Again, despite a large number of unpredictable elements, the solution to, 
equation (193) preserves its closeness to curves of the family (194). 
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7. NEURODYNAMIC M O D E L  OF INFOR MAT ION FUSION 

In this section we will apply open terminal neurodynamic systems for 
simulating information fusion. 

Let us first consider two uncoupled closed systems of  the type (66): 

:~] = 7 sink[-~--~ ~ ' f (  x---~l "~l sin cot (198) 

~ ? 2 = y s i n k [ - - ~ f (  x_-- 2 %lsino,, (199) 

Solutions to these equations are random, and they approach station- 
ary stochastic processes with the normal distributions, respectively, 

l 2 2  1 2 2  
_ _  -x2/2-2 (200) - -  x l / 2 a l  - -  e 

f , ( x , )  =al(2r~)l/~ze , fz(x2) trl(21r)]/2 

Since x, and x2 are independent, their joint density will be 

fl2 = 1 e -x~2/2~1 - x22/2"2 (201) 
2~rtr ~ a2 

Suppose now that equations (198) and (199) are coupled via the 
following microdynamics: 

e~ = eoZ(x2 - xl), e2 = e2(x l  - -  x2), e2 ~ 0 (202) 

i.e., 
I ~. \7 

L .  

The global behavior of this system is defined by the behavior of an 
associated dynamical system: 

~j = Co(X2 - xl ), -~2 = eo(Xl - x2) (205) 

The system (205) has the following set of  equilibrium states: 

x~ = x2 (206) 

All of  them are stable since the roots of  the corresponding characteris- 
tic equation are not positive: 

21 = 0, 22 = - 2  (207) 

When the solution to equations (203) and (204) approaches the 
attractor (206), the dynamical system (203), (204) formally reduces to 
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(198), (199) with the joint density (201). However, now in (201) one must 
set  

xl = x2 = x (208) 

Substituting (208) into (201) and redefining the constant from the 
normalization condition, one obtains the following probabilistic property 
of  the solution to (203), (204) at t ~ oo: 

1 
f ( x  = xl = x2) 0,(27t) 1/z e-"~/2~'- (209) 

in which 

1 a z < a'=, 0,~ (210) 
1/0,'= + 1/0,  

Hence, the neurodynamic system implements fusion of information 
coming from two independent sources about the same object. As a result of 
that fusion, the combined information is characterized by an entropy which 
is smaller than the entropies of each original component of information, 
i.e., the knowledge about this object is improved. 

This paradigm can be generalized to the fusion of n independent 
sources of information: 

',420,,LI 

2, = , s i n k [ ~  ~ ' f (  x-~l ~ l  sin cot + e2(x, -- x.)  
' ,420,,LI 

The solution to this system approaches a stationary stochastic process 
with the probability density (209), where 

1 
0 ,2 - (212) (I/0,, =) 

In the previous examples, the normal distributions were chosen only 
for the sake of analytical simplicity: any other distributions can be utilized 
with the same effect of improvement of the combined information. 

The next paradigm of information fusion is associated with pattern 
recognition. In this section, pattern recognition will be considered as a 
multistep process. In the first step, the pattern is received at a global level 
when it can be simulated by a multidimensional stochastic attractor. This 
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attractor represents a class to which the pattern belongs. In the second step, 
when some additional information becomes available, the original stochas- 
tic attractor is replaced by a lower-dimension stochastic attractor which 
represent a subclass to which the pattern belongs, etc. A chain of such 
attractors of lower and lower dimensionalities which identifies the pattern 
with higher and higher accuracy can be implemented by terminal neurody- 
namics as follows. 

Consider a dynamical system (87), (88) which has a stochastic attrac- 
tor (89), and assume that, as additional information, the regression of x2 
on xl is given in the form 

(213) X 2 ~ ~ X  1 

Then, modifying equations (87), (88) as (1)  
21 = 71 sink[x/~ sin(x1 + x2)] sin cot + e~ x2 -- ~ xl (214) 

) 22 = ~2 sink[,,/~ sin(x1 +xz)] sin e)t +so  ~xl  - x 2  (215) 

and applying the same line of argumentation as for equations (203), (204), 
one concludes that the solution to (214) and (215) approaches a one- 
dimensional attractor which is obtained from (89) as a result of replacing 
x~ by its expression from (213): 

f I 3xl Xl rc < xl < Ir 
f ( x l ) = ~ c c ~ 1 7 6  ' - 3 -  - (216) 

l0 otherwise 

and the constant c is found from the normalization condition: 

1 _ 3 x / ~  (217) 
c = ~/~ [cos(3x,/2) cos(x,/2) I dx, 8 

One can verify that the entropy of the attractor (216) is smaller than 
the entropy of the original attractor (89). 

In terms of pattern recognition, the original attractor (89) can be 
identified with a class of patterns in which each pattern is characterized by 
the parameters xl and x2. Any combination of these parameters has a 
certain probability to appear in a particular pattern. Additional informa- 
tion about the dependence between x~ and x2 for the pattern to be 
recognized extracts a subclass of pattern (216) to which this pattern 
belongs. 

In order to illustrate a chain of stochastic attractors, start with the 
dynamical system (74) for i = 1, 2, 3 and introduce the following two- 
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cascade microdynamics: 

:+1 =V sink err sin o~t + ~ 2 o ( X z + X 3 - X l )  (218) 

xz = V sin~ erf sin ~ t  + eZ(x~ - x :  - x3) + ca(x3 - x2)  (219) 

:~3=7 sinai ~ er"~f( Y~22)1 sin ~ o t + e Z ( x ~ - x 2 - x 3 ) + ~ 4 ( x 2 - x 3 )  (220) 

If eo = 0, then the solution to this system converges to a three-dimen- 
sional stochastic attractor with the joint density given by (63) at n = 3. 

When eo ~ 0 (but eo ~ 0), the solution to this system first converges to 
a two-dimensional attractor on the plane 

xl = x2 + x3 (221) 

with the joint density given by equation (63) at n = 3 after substitution of 
equation (221) instead of x~ and redefining the constant from the normal- 
ization condition. Then the solution converges to a one-dimensional attrac- 
tor which dwells on the line 

X 2 = X 3 (222) 

of the plane (221). 

8. CONCLUSION 

This paper presents and discusses physical models for simulating some 
aspects of neural intelligence, and in particular the process of cognition. 
The main departure from classical approach here is in utilization of a 
terminal version of classical dynamics introduced in Zak (1992, 1993a). 
Based upon violations of the Lipschitz condition at equilibrium points, 
terminal dynamics attains two new fundamental properties: it is sponta- 
neous and nondeterministic. Special attention is focused on terminal neuro- 
dynamics as a particular architecture of terminal dynamics which is 
suitable for modeling information flows. Terminal neurodynamics possesses 
a well-organized probabilistic structure which can be analytically predicted, 
prescribed, and controlled, and therefore presents a powerful tool for 
modeling real-life uncertainties. Two basic phenomena associated with 
random behavior of neurodynamic solutions are exploited. The first one is 
a stochastic at tractor--a stable stationary stochastic process to which 
random solutions of a closed system converge. As a model of the cognition 
process, a stochastic attractor can be viewed as a universal tool for 
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generalization and formation of  classes of  patterns. The concept of  stochas- 
tic attractor is applied to model a collective brain paradigm explaining 
coordination between simple units of  intelligence which perform a collec- 
tive task without direct exchange of  information. The second fundamental 
phenomenon discussed is terminal chaos which occurs in open systems. 
Applications of terminal chaos to information fusion as well as to explana- 
tion and modeling of  coordination among neurons in biological systems are 
discussed. It should be emphasized that all the models of  terminal neurody- 
namics are implementable in analog devices, which means that all the 
cognition processes discussed are reducible to the laws of  Newtonian 
mechanics. 
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